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ABSTRACT 

This report presents a generalization of an analysis d u e  to  Vinti w h i c h  p r n -  

vides an nccurate reference orbit for perturbation theories for  ear th  satellites. 
The general potential function which permits separation of the Hamilton-.Jacobi 
equation in triaxially ellipsoidal coordinates is derived and specialized s o  that it 
satisfies the Laplace equation and qualifies as a gravitational potential. 

theory of Stackel systems is then applied t o  reduce the problem t o  quadratures. 

The 
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SECTION 1 

INTRODUCTION 

This report  presents a generalization of the well-known analysis of Vinti 
which provides an accurate reference orbit for  perturbation theories  for the mo- 
tion of a satellite in the gravitational field of the earth. 

The organization of presentation followed here  is somewhat unorthodox. 

Because of the algebraic complexity of some of the results and because some of 
the methods used a r e  not readily available in the literature, the appendices have 

assumed an unusual importance. 
the appendices and cites resul ts  obtained therein by use of equation numbers pre-  
faced by le t ters  indicating the specific appendices referred to. 

The main body of the report  draws heavily on 

In particular, unless the reader  is familiar with ellipsoidal coordinates and 
the theory of StZckel systems, it is advisable that he turn first t o  Appendices A 
and D for  a summary and references. 

The idea to  be pursued here is rather the reverse  of the approach ordinarily 
used in satellite problems. Here we seek those mechanical systems which can 
be integrated by quadratures and examine them t o  find one which may be applicable 
t o  the case of satellite motion, rather than write down the equations of satellite 

motion and seek to  solve them. The c lass  of problems considered is restr ic ted 
t o  soluble ones. That this  is a profitable avenue for exploration has been shown 

by Vinti. 

The characterization of systems wi l l  be via the Hamilton- Jacobi method; that 

is, we start with the Hamilton-Jacobi equation for motion of a particle and place 
successive se t s  of restrictions on the  coordinates used and the form of the poten- 
tial function to  ca r ry  out the objective stated in the previous paragraph. The de- 
ta i l s  of the approach a r e  a s  follows: W e  find first the most general set of 

orthogonal coordinates that allow separation of the Hamilton- Jacobi equation, 
ellipsoidal coordinates [Weinacht 1. Given these, we next find the restricted 

form of the potential function, V, which allows the equations of motion for  a 

particle moving in  the field generated by V to  be solved by the separation of 

9 
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Names contained in brackets refer  to references at the end of the report. 
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variables of the corresponding Hamilton- Jacobi equation. 
restricted further so that it satisfies the Laplace equation and qualifies as a gra-  
vitational potential. 
and these are then selected to  eliminate any singularities in the region of interest  
outside the planets. 
function agree with the actual gravitational potential outside the planet. 
are enough parameters left to  make this last step meaningful. 

This function is then 

This doubly restricted function still contains free parameters,  

Any remaining constants may be chosen t o  make the potential 
There 
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SECTION 2 

THE STACKEL SYSTEM 

Before progressing to  the dynamical system, w e  must show that the proper 
prerequisites a r e  satisfied by the ellipsoidal coordinate system. 

of these is that a Stgckel matrix exist for the particular ellipsoidal coordinates 
defined in Appendix A. 
size, a r e  the real roots of the cubic polynomial in t derived from the relation 

The most basic 

These coordinates, A ,  p ,  and v, listed in  decreasing 

2 2 2 

a 2 + t  b 2 t t  c 2 t t  

x t - + - = 1  Y 2 

2 2 by multiplication by (a2 + t ) (b  + t ) (c  + t) on both sides. The existence of this 
matrix, with the properties prescribed in Eqs. (D14) and (D15) is easi ly  shown 
by displaying it. 

Using the notation of Appendices A and D, it is [Eisenhart] 

A - A * 1 ' -  

4R2 4R2 4R2 
- -  

1 U 
2 
- -- V - 

4 T 2  4T2 4 T 2  

Note that the i-th row of 
the first row depends on A only, etc. 

depends only on the i-th coordinate as required, i. e., 

A direct computation yields the determinant needed t o  compute the inverse 

mat r ix  of 
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The inverse matrix, I#, is given by 

A s  required, the first row consists of the squares of the reciprocals of the 
metr ic  coefficients. Thus the ellipsoidal coordinates possess the required 
matrices,  
Jacobi equation. 

The coordinates w i l l  allow separation of variables in the Hamilton- 

The next step is t o  consider the potential function, it a lso must be chosen t o  
In consonance with Eq. (D16), the potential must be the form allow separability. 

where $, $f, and 0 a r e  a rb i t r a ry  functions. 
forcing them t o  be such that V satisfies the Laplace equation 

These functions a r e  restricted by 

The work involved in this step is considerable and it has been carr ied out in 

Appendix B where w e  find from Eq. (B19) that 

w ( u )  = T(u1J- dv + K ~ T ( v )  

In these equations K1> K2> Kg a r e  f r e e  constants and p is an a rb i t r a ry  polynomi- 
a1 of the fourth order. 
sufficient in Appendix B. 

4 
The equations a r e  shown t o  be necessary in Weinacht and 

The final step before applications a r e  considered, as given in the introduc- 
tion, is the elimination of singularities. 
and the result is that we must have 

This step is ca r r i ed  out in Appendix C, 
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$(P) = w ( v )  - 0  (7) 

and 
dA) = -ER(k) 

where E is the product of the gravitational constant and the mass  of the planet. 
Hence the resulting separable potential is of the form 

It is now apparent that the satellite motion in ellipsoidal coordinates, with a po- 

tential function given by Eq. (8) gives rise t o  a Stsckel system, s i x e  the neces- 
s a r y  matr ices  have been given in Eqs. ( 2 )  and (4) and since Eq. (8) is of the form 

of Eq. (5), with Eq. (7) holding. 

5 



SECTION 3 

APPLICATION TO THE ELLIPSOIDAL PROBLEM 

The major concern in this section is the reduction of the relevant Hamilton- 
Jacobi equation to quadratures. 
becomes 

With use of Eq. (A18), the result  in Eq. (8) 

2 2 v = - E  d ( A +  a ) ( A +  b ) ( A +  c2) 

( A -  P)(A- V )  
(9) 

and since from Eq. ( A l l )  

w e  see that 

A t  this  point it is possible t o  apply the theory of Stackel systems a s  described in 
Eq. (D16) with 

and 
51 - A ,  5 2 . A  5 3 " " t  

v 2 - v 3 = 0  E 
"1 = -m ' 

Thus the quadratures derived from Eq. (D17) a r e  given by a solution of 

6 
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The constants a l ,  a2, a3  can be derived from initial conditions by use of the 

integrals of the system in Eq. (D22) 

2 2 
pp hv p v  h p  - - -  - + - - - +  - = a 2  

2 4R(h) h2 2 ,  h 2  T h 2  
J .* P 

(P? E ),UV 
(13) 

Namely, given Cartesian coordinates for the initial velocity and position we can 

employ Eqs. (A8) and (D6) to find A, p,  V ,  ph, 

hence al, a2, a 3  from Eqs. (12). (13). (14). 
hand sides in Eq. (11) and leads to WA, W 
from Eq. (D12). 

quadratures given by Eq. (11) or by Eq. (D25). 

p, for the initial point and 
In theory, this  specifies the right- 

and hence to  W(A,p, V, al, a2, a3) 

pP’ 

W P’ v 
The equations (D11) then lead t o  the solution in t e rms  of the 

Some further information can be extracted from these integrals for  the satel- 
The satellite case is given by prescribing lite case where A is greater  than zero. 

that the energy, al, be negative t o  obtain bounded orbits. 

(12) then shows that we must have 

The integral of Eq. 

2 

since i f  this condition does not hold everywhere, then a l  must be positive, giving 
a contradiction. We can use Eq. (15) i n  the second integral, Eq. (13), along with 
the knowledge of the ellipsoidal coordinates to  show that 

a 2  < 0 

th i s  follows from an  examination of the individual terms.  
not give a definite result  unless h is large and positive enough to  make h + v and 
h + p positive also. 

The final integral does 

In this  case we can say that 

a 3  > 0 

This  information does lead to knowledge useful in  the evaluation of the elliptic 

integrals that resul t  f rom Eq. (11). However, in the case of near-earth satellites 

it is possi’oie to  avoid ihese iriiegi-ais arid periorm ari approxirnaie inversion. 
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SUMMARY 

This report has presented the theoretical aspects of the separable ellipsoidal 
potential, its derivation and specification and its use, in principle, to  solve for 
the motion of a mass  particle in the force field derived from it. 

The present report  has been written at a natural break-point in the theory of 
this potential. While it is of theoretical interest  because it is the most general 
potential which separates  the Euclidean Hamilton- Jacobi equation in orthogonal 
coordinates, in practice the thrust  of the development from this point on is away 
from generality and towards more specialization. 
terminate the general work at this stage and continue the specialization in another 
report. 

Therefore it is advisable t o  

The process of specialization consists mainly of two steps. The ellipsoidal 
coordinates, A , p , and v have been employed until th is  point because of their  
symmetry and mathematical convenience. However, once the potential function 
has been found, there is no need t o  remain with them, and a first s tep is to  de- 
fine new coordinates which relate more directly to  spherical  coordinates and ex- 
press  the potential in t e r m s  of them. 
determine methods for  an approximate inversion of the elliptic integrals as can 
be done i f  a suitable small  parameter can be found. 

The second step is to  investigate and 

These steps can be carr ied out to  yield resul ts  which a r e  confirmed by a 
comparison wi th  numerical resul ts  due t o  application of the method of Vinti. 
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APPENDIX A 

THE ELLIPSOIDAL COORDINATES 

A coordinate system in three dimensions associates  a set  of three numbers 

with each point in space. In physical problems there  is often a particular coordi- 
nate system which makes this association in an especially appropriate way due to  
cer ta in  symmetr ies  o r  analytic simplifications that it may bring about. 

In this  respect the present problem is no exception. The coordinates to  be 
used a r e  ellipsoidal coordinates. 

Let each point in  space be assigned the coordinates (x, y, z )  in a fixed Car- 
tesian reference frame. The corresponding ellipsoidal coordinates, ( ) I , p , v )  are 
defined a s  the three  rea l  solutions of the cubic polynomial in t obtained from the 
equation 

2 2 2 
X Y z - t- t- i 1 

a 2 + t  b 2 t t  c 2 t +  
( A l )  

W e  define X a s  the largest  root, p a s  the next largest, and v a s  the smallest 
root. 

That there  a r e  three  real  roots can be verified by considering the cubic 

polynomial 

where 

Without loss  of generality w e  order  the constants a, b, c so  that in  the general case 

a 2  > b 2  7 c 2  > 0 (A4) 

The real character  of the roots of Eq. (A2) can be shown by examining the sign 
of f ( t )  for  five particular values of t. By virtue of Eq. (A4) we have, 
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f ( - c y  = -z2(a2-c$(b2-c$  0 

2 2 2  
f(-b = + y  (a - b 5 ( b 2 - c 5  > 0 

2 
f(-a ) = -x2(a2-b3(b2-c2)  0 

f(-u)) = --u) 

The sign changes indicate that the following restrictions hold for X, p ,  and V ,  

2 2 2 (A6) 
-a ' u 5 - b  ~ ~ 2 - c  ( h i m  

If w e  successively substitute X, p ,  and v into Eq. ( A l )  and use these inequali- 
t ies,  w e  find that the resulting equations with A ,  p ,  v held constant represent 
confocal ellipsoids, hyperboloids of one sheet, and hyperboloids of two sheets, 
respectively, when x, y, and z vary. 
of each family of surfaces are orthogonal t o  all of the members  of each of the 
others and thus the coordinate system is orthogonal. 

By their definition, we have that A ,  p ,  v satisfy 

With some special exceptions, the members  

(A7) ( t  - A)( t  - p ) ( t  - v) = f(t) 

and this leads us t o  expressions for x , y , and z 
2 2 2  If we successively put t = -a , -b  , -c , we find 

2 2 2 

2 2  2 .  in t e r m s  of the new coordinates. 

x -  2 - ( a  t h ) ( a  + d a  + v )  
2 

(a -b$(a2 - c $  

2 2 2 
2 (c + A)(c + p ) ( c  + U) 

2 2 2  2 
(a - c ) ( b  - c )  

z =  

These formulas, together with the next one t o  be stated, allow the comparison Of 

the potential found in this  report  with the more standard spherical harmonic ex- 
pressions. Addition of the three members  of Eq. (A8) gives, 

* 

c 

(A9) 
r 2 = x 2 t y 2 t z  2 2 2  = a  t b  t c 2 t h + p t v  

10 



Special Values 

For la ter  use certain facts must be established about the cases when the 
equalities are attained in Eq. (A6); this w i l l  be important in consideration of pos- 
sible singularities in the potential function and in consideration of the case of 

double roots of the polynomial f( t )  in Eq. (A2). Special values of A, p , and v 
arise in consideration of the coordinate planes and coordinates axes in  the under- 
lying frame of reference. 
specialized to the case of orbital motion by the following consideration. 

end result, a, b, and c will approximate principal radii  of the ear th  and of course 
for satellite motion the radius vector to the satellite must have a magnitude greater  
than any of these. 

that x, y, and z a r e  such that A is positive. 

It should be noticed that the following resul ts  are 
In the 

Thus, for convenience in the following, the assumption is made 

Consider first the three coordinate axes. 

1. The x-axis is given by: 

2 2  
A = x  - 0  > O  

L 
/l * 'C 

2 
u = -b 

2. The y-axis is given by: 

2 2  
A = y  - b  > O  

2 
,LL = -c 

2 
v = -a 

3. The z-axis is given by: 

2 2  
A.2 - c  > O  

2 
,LL = -b 

(A 10) 

( A l l )  

(A12) 

2 
u = -a 

These results follow from detailed examination of f ( t )  in Eq. (A2) in each case. 

The problem of the coordinate planes is slightly more complicated, since 
here f ( t )  reduces to a quadratic equation rather  than a l inear one a s  in the case of 
the coorciinaie axes. 
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F o r  the x-y plane (z = 0), the cubic equation for A ,  p ,  and v becomes 

2 2 2  2 2  0 - ( c 2 t t ) [ ( o  t t ) ( b 2 + t )  - x  (b t t )  - y  (C t t ) ]  

2 It is immediately apparent that one root is t = - c  . 
assumed positive, by Eq. (A6) w e  must have the following result. 

Furthermore,  since A is 
The x-y plane 

is characterized by 
2 

u = -c 

A similar  analysis for the y-z plane, ( x =  0), shows that 

u = -a 
2 

The case  of the x-z plane, (y = 0). is more complicated. 

(A 13)  

it is characterized by 

(-414) 

Here one root is given 
by t -bL. 
question is whether p or V is equal to  -b 
that f o r  one part of the x-z plane p = -b 
plane is characterized by both p and v becoming equal t o  -b 
Moreover, there  is a curve in this plane, 

This is in the admissible range of both p and v by Eq. (A6). The 
2 for this  case. A n  examination shows 

Thus the x-z 2 2 and for another v = -b . 
2 somewhere in it. 

2 2 
X 1 

1 ---= 
2 2 2 2  

a - b  b - c  

2 where A = Thus, for example, for the potential t o  be considered la ter  
t o  be analytic everywhere outside r = a w e  must consider this double root case. 
In summary, the x-z plane is characterized by 

= -b . 

2 2 
p = - b  or v = - b  

2 
p = v = - b  

o r  

(A15) 

Other properties w e  w i l l  need w i l l  be stated without detailed derivation; fur- 

ther  information may be found in one of the references [Hildebrand, Kellogg, 
Mason and Weaver]. 

The metric in this coordinate system is 

2 2 2  2 2 2 2  d s  =hkddx + h p d p  t h J v  

where 

1 2  



The functions R(A), S(p) ,  and T(v) a re  defined a s  

The metric coefficients of Eq. (A17) permit the derivation of the Laplacian, 

The gradient of a function g(X, p , v )  follows from Eq. (A17) since 

(A 19) 

Finally, it follows that A - r 2  a s  A -  (I) . This is seen from Eq. (A9), where 
division by X yields 

2 2 2 2  
r a + b  + C  + U + Y  

A I +  

Since p and v a r e  restricted by Eq. (AS), we have the desired result, 

- =  
A 
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APPENDIX B 

GENERATION OF’ THE SOLUTIONS 

In this appendix, w e  indicate how the solutions of the Laplace equation, which 
were displayed before, a r e  obtained. Not a small  part of the motivation for this 
appendix comes from the fact  that unless a proper route is followed the required 
algebraic manipulations become enormous. 

A s  has been stated, the solution of the Laplace equation must be of a certain 
form in order f o r  the Hamilton-Jacobi equation t o  separate. The form is 

The functions $, I&, and w must be chosen t o  satisfy the Laplace equation, and in 
order  t o  obtain the simplest expressions we make the choices in two steps. 

F o r  the first step, we ignore the ranges of A ,  p ,  and u and place the main 
emphasis on finding a solution. 
to  be used. The form follows simply by moving the minus sign outside the radical 
S ( p )  in Eq. (A19) as the imaginary quantity i and by assuming that the polynomial 
remaining under the square root is positive. 

using the first expression of Eq. (A18), 

This allows a symmetric form of the Laplacian 

The resulting Laplace equation is,  

This equation is invariant under cyclic permutations of A,  p , v and will be con- 
venient in that once a solution is found, two others may be generated by applying 
two successive permutations of A ,  p , v t o  it. Of course, straightforward com- 
putation can avoid this step by guessing two new solutions and verifying them in 
Eq. (A19). W e  look for solutions of the form 

(B3) 

14 



where G is a constant. 

the t e r m s  in braces  a r e  displayed one a t  a t ime and the factor multiplying the t e r m s  
in the braces  is neglected, w e  make  the assumption that it is nonzero. 

When this is substituted into Eq. (B2), for convenience 

2 Since R ( h )  contains a radical, it w i l l  be helpful t o  work in t e r m s  of R (A) and 
its derivatives, denoted here by primes. Af t e r  some algebra, we find 

and 

By adding Eqs. (B4), (B5), and (B6) w e  obtain, after grouping over a common 
denominator, a factor 

which multiplies a polynomial in A, p ,  v . 
when an  arbi t rary cubic polynomial is substituted for  the function R . 
cellations are quite spectacular. Since R (A) can be considered arbitrary, its 
roots can be considered arbi t rary also. 

solution for  a rb i t r a ry  values of a, b, and c. 

+(A) = G,R(A) 

This polynomial vanishes identically 
2 The can- 

2 

This means that Eq. (B3) provides a 
Thus Eq. (B3) is a solution, and 

U ( V )  = G3R(v) 

3 give solutions also, with GI, G2, and G arbi t rary constants. 

We now return completely t o  the notation of Appendix A and find a more com- 

A - - - - -  nlev set. of snlidi~ns which fo l lows  from the t h r p p  jiust foijmrl. 
t he  th ree  basic solutions 

p r n c ~ ~ d ,  d e f i ~ p  

15 



where Eq. (A18)  has been used. Since the Laplacian is a linear operator, 
2 2 2 (R9)  7 S A - 0  s P = v  s,=o 

and, employing this  fact, w e  seek a solution in the form 

Hence 

and by Eq. (B9) 
02V = S,05 t S,O 2 J +SUO 2 K 

Because H, J and K are functions of only one variable, the notation of Eq. (A17)  
gives 

OK = (0, 0, tg)  
With the use of these, the dot products in Eq. (B11) can be simplified t o  give 

2 aSuaK 
2 av au 

hU 

2OS, * O K  =-  - - 

1 6  



Like wise 

The three relations in Eq. (A17) now can be used to  replace the h ' s  in t e r m s  of 

R, S, T, and h, p ,  V. When this is done, Eqs. (B12) and (B13) may be summed 
t o  give 

application of the definitions of Eq. (B8) allows the reduction of Eq. (B14) to  

In this  equation 

3 aH F,=R ( A )  - 
a h  

3 aK Fv = T (Y )  - au  

The equation (B15) contains a l l  the necessary information, the form of the func- 
tions FA, F F follows simply. Integration of Eq. (B15) with respect t o  h 

yields 
P' v 

FA +C(,,u) = 0 -- 
(v - A ) ( v  - p)  

2 
( h - p )  ( A - v )  

Here C(p ,v )  is an a rb i t ra ry  function of IJ. and v. A multiplication by the factor 

17 



leads to  the result  that 

F A +  P ~ ( A , P ,  v )  = 0 

where F is a function of alone and p (A,p, v )  is a fourth order  polynomial in h 

whose coefficients depend on p and v. However, since A ,  p , v a r e  independent 
variables, each of the coefficients must be a constant [Kellogg, pg. 205 I. Thus 

A 4 

with Co, C1, C2, C3, C4 constant. 

A similar analysis shows that F and F v  must both be quartic polynomials. 
If arbitrary coefficients a r e  assigned t o  each polynomial and i f  they a r e  substi- 
tuted into Eq. (B15), we find that the coefficients must be the same for FAD F 

P 

P’  
FV’ 

Thus from Eq. (B16) 

where p4 is an  arbi t rary fourth-order polynomial, given by Eq. (B17), and the 

K’s  a r e  constants. 

If w e  use Eq. (BlO), then our solutions a r e  given by Eq. (Bl),  with 

These solutions include those given by Eq. (B7) as a special case. 
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APPENDIX C 

EXAMINATION AND SPECIALIZATION OF THE SOLUTION 

While the general solution for the separable potential given in Eq. (B19) is 
not needed here, w e  give, for  reference, the reduction necessary to place the 
integrals in a form compatible with standard references [Byrd and Friedman]. 
A typical integral is 

To t reat  this, and reduce it t o  a sum of elliptic integrals, we must find the partial 
fraction expansion of 

P 4 M  

' = ( x + a l ( x  t b y ( x  t c y  

After computation we find that 

2 M N P 
t- t- 5 = c4x + [C, - (a2 t b t c~C, ]  t - 

2 2 
x + a 2  x t b  X + C  

The coefficients M, N, P display a pleasing symmetry. Their values a r e  

8 6 4 2 
C4a - C p  + C p  -C,a t C 0  

(b2 - a y ( c 2  - a? 
M =  

8 4 2 
C4b -C3b6 +C2b -Clb t C o  

2 2 2  2 
(a - b )(c - b ) 

N -  

8 6 4 2 

(a - c  )(b - c 5  

c4c - c3c  t C 2 c  - c , c  +co 
2 2 2  

P =  

(C3) 

After use of this  expansion, there  are  only three types of integrals to  be evaluated. 
These a r e  of the following forms 
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f x dx 
(C4) 

and 
dx 

(0) 

There is one integral of forms Eqs. (C4) and (C5) and there  a r e  three of the 
form Eq. (C6). 

From this point on, we start specification of the free  constants in Eq. (B19) 
t o  eliminate singularities in the region of interest outside a planet. 
certain element of choice in the order  of presentation due t o  the l imits which 
must be prescribed for  the integrals. 
conditions followed here  will be the same regardless of the order  chosen. 
conditions are necessary in order  that the solution V qualify as a gravitational 

potential. 

There is a 

However, the resul ts  of the imDosition of 
These 

The basic requirement is that the integrals exist for the permissible ranges 
From Eq. of the variables A,p , v , 

(A211 it can be seen that A-r2 as A-a, so  that in this limit, since p and v 
are bounded by Eq. (A6), the dominant t e rm becomes 

First, the region A- a, will be examined. 

with $(A) given in  Eq. (B19) . Hence 

2 Here a is an a rb i t r a ry  constant, -c 5 a < a, . 
A d  00 , w e  must set C4 0. 
on the integral s o  that $(A) becomes 

If this  integral is t o  exist a s  
Because K1 is arbitrary,  we may set the l imits 

where p3(() is identical with p4([) with C4 0. 

In order t o  have agreement with classical  theory, V must approach 
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2 where p = v = -b lie on a hyperbola and thus are found arbi t rar i ly  far away from 
the origin. The t e r m s  that must be analyzed a r e  

ICIb) + w ( u )  

( P  - u )  ( u - A ) ( u - p )  

The difference between the functions t&p)(v - A )  and ( p  - X ) w ( v )  must vanish more 

rapidly than (p - V )  does regardless of the way in  which p and V approach -b . 
If w e  set 

2 

2 p = - b  i e  

6,t 0 

then an examination of the problem for  E and 6 as they approach zero indicates 
that 

K 2 = K 3 = O  

and the l i m i t s  i n  I/&) and w ( v )  must be chosen so that 

If w e  examine the existence of the potential only, as has  been done t o  this point, 

the constant C is not determined. 
a lso considered, the balance of t e r m s  found by the choice of the l imits  in Eqs. 
(C14) and (C15) fails t o  hold, and in order  to  eliminate the singularities in  this 

However, if  the gradient of the potential is 

case w e  must choose 
c = o  

Thus the final potential becomes 

(C16) 

L 

A s  a check, this  potential can be found t o  reproduce the potential of Vinti, to  be 
found in  the references,  in the limit as b + a  and c -t 0. 
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APPENDIX D 

EUCLIDEAN STACKEL SYSTEMS 

This appendix presents a brief summary of the results of Stackel which a r e  

pertinent t o  the present investigation. 
poses and to  introduce notation. 
tained in the references at the end of the report  [Eisenhart, Iszak, Stgckel]. 

It is included primarily for reference pur- 
More detailed expositions of the theory a r e  con- 

Consider the motion of a particle a s  described by a set of Cartesian coordi- 
nates xl, x2, x3, with the forces  acting on the particle derivable from a potential 

function V(xl, x2, x3). The Hamiltonian function for such a system is 

Here the dots over the coordinates denote t ime differentiation and a l  is a constant, 

the energy. 
written as 

With the use of H, the Hamiltonian equations of motion may be 

where p. is the momentum conjugate to  xi' 
1 

pi  = i i  

Let t,, t 2 ,  5, be a set  of orthogonal curvilinear coordinates introduced into 

the Euclidean system by the transformation 

Small changes in the coordinates tl, t 2 ,  5, w i l l  move a point in space through a 

distance as given by [Hildebrand]. 

The coefficient functions hl, h2, hg in general depend on all of the coordinates 
and will be r e fe r r ed  t o  here as the metric coefficients. 
tions will play an important role in the succeeding results. 

These coefficient func- 
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A t  this point it is possible t o  w r i t e  down the Hamiltonian and the equations of 

motion in t e r m s  of the new coordinates. The new Hamiltonian is 

as before, p w i l l  be the momentum conjugate t o  < .  and we find ti  1 

The Hamiltonian equations of motion a r e  

aH ( i  = 1,2,3) 

This system, together with initial conditions which determine the six constants of 
integration, w i l l  give a complete description of the motion once the coordinate 
transformations of Eq. (D3) a r e  specified. 

Consider now the central  question t o  be considered in this appendix. This is 
t o  find the most general set of coordinates of Eq. (D3) which permit the solution 
of the system of Eq. (D7) t o  be reduced to  quadratures and to  find the form of 

the potential function which allows this reduction t o  be carr ied out. 
was considered by Stsckel in 1891, in t e r m s  of the Hamilton-Jacobi equation for 
the system in Eq. (D7). This is 

This question 

The function 

plays the fundamental role in this theory (a2, a3 are a rb i t r a ry  constants of inte- 
gration), for if the partial differential equation (D8) can be solved for  W the 
solution of the system in Eq. (D7) is given implicitly. The relations which per- 
mit this  are  

P =- , ( i  = 1,2,3) 
ti a t i  

and 

In Eq. (Dl l ) ,  pl, p2, 6 ,  a r e  three additional a rb i t r a ry  constants. 
constants and the constants al, a2, a 3  give the s ix  necessary t o  match given initial 
conditions. 

These three 

The solution process can be summarized a s  follows: 
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2. Differentiate a s  in Eq. (D11) t o  find the 5. given implicitly in t e r m s  
of the ai, pi, and t. 

Solve for  t i  explicitly a s  functions of the ai, pi and t and insert  them 
in Eq. (D10) to  find the p This last  step is optional if  only posi- 

tion information is of interest. It can also be bypassed by t ime 
differentiation of the final expressions for the t i  and use of Eq. 
(D6) i f  this course of action is simpler. 

1 

3. 
. 

‘j 

In principle, and with proper mathematical restrictions, these s teps  can he 

carr ied out. However, the matter of the solution of Eq. (D8), the initial step, 
is usually as difficult a s  the solution of the original dynamical system, Eq. (D7). 

Stackel looked at the case where W can be found in the form 
3 

the separable case, where each function Wi depends only on t i  and the constants 
a 
ai alone, 

He sought each function Wi in the form of an integral of a function of ti and i‘ 

In this  case both steps one and t w o  of the solution can be carr ied out with at most 

an  integration left t o  be done. 
general, and assumptions must be made upon the system t o  assure  their  existence. 

Stackel’s resul ts  are given as follows: 

Solutions of this  desirable form do not exist in 

1. Assume that a matrix, depending on the coordinate system only, 

called a Stackel matrix, exists. This matrix, 

is such that the i-th row contains functions depending on the i-th 
curvilinear coordinate only, as indicated. 

2. Assume that the inverse of the matr ix  a, a, exists and has the 

property that 
- 1  1 

1 

V = @  = i $ i j [  I +li=Z (D15) 

the first row is made up of the reciprocals of the squares of the 
metr ic  coefficients. 
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3. Assume that the potential function is of the form 

where the function V .  depends on the coordinate 5 .  only. 
J J 

Systems which satisfy these three assumptions a r e  called Stzckel systems. 

The results, under these assumptions, a r e  that the most general coordinates 
that allow separation a r e  triaxially ellipsoidal coordinates as given in Appendix 
A [Weinacht] and that the solution is given by Eq. (D12) where w e  find the function 
W .  from 

3 

The quantities, 0 .  
a rb i t r a ry  constants with a l  equal t o  the energy in  the case considered here. 

Before commenting on the assumptions and results, w e  first verify that 

and V .  a r e  a s  defined in Eqs. (D14) and (D16) and the ak a r e  
Jk J 

specification of W .  by means of Eq. (D17) leads t o  a solution of the Hamilton- 
J 

Jacobi equation. 

The first step simply involves a reformulation of the Hamilton- Jacobi equa- 
tion in t e r m s  of the inverse of the Stsckel matrix and the potential functions V;. 
From Eqs. (D15), (D16) and (D8) we find 

It follows immediately from Eq. (D12) that 

and the Hamilton- Jacobi equation is 

t v .  5 

I] 

The verification follows simply by substitution using Eq. (D17), and Eq. (D20) 

becomes 
3 3 

j -1 k = l  
$ l j  c a k d j k  =‘al 
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or 

Since 9 and 
k # 1 and one when k = 1. 

a r e  inverse matrices, the summation in braces  is zero  when 

This  gives the resul t  that 

a1 = a 1  

Thus it has  been verified that the Stzckel assumptions a r e  sufficient t o  produce a 

separable solution to  the Euclidean Hamilton- Jacobi equation. 
these assumptions can be found i n  the original Stackel Habilitationsschrift. 

The necessity of 

In addition to  the solution by quadratures, Stickel systems possess  a set of 

These follow from Eq. (D17) with the quadratic integrals of the equations (D7). 
use of Eq. (D10). The integrals a r e  given by 

These a r e  useful in  determining the constants a 

It w i l l  be possible, in the case considered in the body of this  report, t o  find the 
signs of the constants a 

in t e r m s  of the initial conditions. k 

k' 

A more  convenient form of Eq. (D21) is obtained by multiplication by + . 
mJ 

and summation of the result with respect t o  j. The f inal  result is 

This expression permits  the am t o  be determined directly from initial conditions. 

In conclusion, it should be pointed out that the derivatives in Eq. (Dl l ) ,  the 
equations t o  be solved for the coordinates, can be written down explicitly with 

quadratures remaining t o  be done. From Eq. (D17), the function W .  is given by 
J 

The plus sign is t o  be used if 5 .  is increasing and vice versa. J 
our convenience that the sign is absorbed into d5 . and perform the differentiations 
t o  find 

Let us  assume for 

J 
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where both j and m range between one and three. By summing Eq. (D24) w e  ob- 
tain the final result 

Thus, in the general case, 5 .  is t o  be found by inverting a function which is a sum 
of three t e r m s  each representing an integral. 
on the potential function and on the Stzckel matrix and must be assessed in each 

case. 

J 
The difficulty of this t a s k  depends 

In practice approximations must be used t o  do the inversion. 
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